BGP, where are we now?

John Scudder and David Ward May 2007

Agenda

- Trivia
- Dynamic behavior
- Convergence properties and problems
- Convergence/stability work items

Goals and Priorities

- BGP Goal: Maximize connectivity of Internet
- Convergence and stability are subsidiary to this
- Implication: Priorities
 - First: fastest service restoration
 - Second: minimize peak load on control plane

Focus

- This talk focuses on performance and stability
- There are other very important aspects of BGP
 - Services
 - Operations
 - Weird behaviors (wedgies, etc)
 - Security
 - Policy modeling
 - ...
 - But we don't have all day

Shalt Not's

- BGP uses ASes for loop suppression and nothing else!
 - Speaking of "overloading things"... ASes are not locators. No topological significance.
- Auto-aggregation appears to be a nonstarter
 - Even proxy aggregation is tricky, but that's an operational consideration

MP-BGP

- BGP carries data for multiple address families (AFs)
 - Plain old IP (v4, v6)
 - VPNv4
 - Other things
- Not all AFs need to be present on all routers!

VPNs

- Often observed that VPN tables larger than Internet table
 - True, in aggregate
 - But, not true of any single VPN table
- Inherently parallelizable
 - No single PE or RR holds all VPN tables
 - Operational challenges to managing
 - Some tools to do this, e.g. rt-constrain

BGP dynamic behavior

- Confusion even among routing experts
- Of course, surprising emergent behaviors are possible
- ... but important to understand bounding conditions

BGP and TCP

- BGP runs over TCP
 - Flow control: important implications for dynamics
 - Intuition about TCP is usually wrong...

BGP under load

- When uncongested, BGP will pass updates as fast as they are received
 - Modulo MRAI, dampening
- Degradation mode under (CPU) congestion: state compression
 - "Adaptive low-pass filter" behavior emerges
 - Things slow down, they typically do not melt

BGP under load [2]

- BGP adapts to speed of peer
 - Slow peer gets routes as slow as it wants (with state compression)
 - Fast peer gets routes as fast as it wants
 - Implication: One slow peer does not hinder overall convergence
- Update packing
 - Low prefix/update ratios when not congested... but that's fine!
 - High ratios emerge under congestion... which is when needed

BGP convergence

- At least O(n) in the size of the DFZ table
 - Fundamental to how BGP transports routes
- But full convergences don't happen often!
 - At startup ("initial convergence")
 - On rare occasions otherwise
- Hard to "fix" completely but is it broke?
 - "BGP's biggest, yet least important, problem."

BGP convergence [2]

- Techniques to avoid full convergences
 - Graceful Restart
 - Nonstop Routing
- ... or to cover them up
 - Different flavors of fast reroute
- ... or to pre-converge by advertising extra routes
 - Best-external, multi-path and similar

Route Reflection

- RRs hide backup paths
 - Reduce RIB sizes (but less than you think)
 - Bad for convergence
- Convergence:
 - State reduction/data hiding
 - Faster convergence
 - Pick one

Known Algorithmic Deficiencies

- Path hunting
- Nonconverging policies
- At least O(n) in DFZ size

Path Hunting

- Well-known amplification effect
- Approaches to reduce
 - Root cause notification
 - Propagation of backup paths

Propagation of Backup Paths

- Transit ASes seldom fully partition from each other
- However, when a single AS-AS link goes down, border router temporarily loses routes
 - Due to aggressive data hiding by lesspreferred border routers and RRs

Propagation of Backup Paths [2]

- Speculation: many "path disturbance" events caused by this effect
- Intra-domain backup propagation feasible today
- Cost: some additional RIB state within AS
- Benefit: faster internal convergence and global stability

Some Possible Tools

**** = under discussion

- As-pathlimit ****
- Aggregate withdraw ****
- Best-external ****
- Better instrumentation reusing WRD infra
- BGP free core (pick your encap) ****

- Dampening (with better parameters) ****
- Multi-path ****
- Root cause notification
- BGP Fast Re-Route ****
- Better UPDATE packing algorithms/techniques

Moving Forward

- Narrow down (or expand!) "possible tools"
 list
- Align costs and benefits
 - Those who pay, must benefit, or solution will never be deployed
 - Many examples of existing technically-excellent "solutions" to current problems... but problems still exist. Example: BCP-38
 - Deployment trumps all considerations!
- Focus on behavior under load (or making load go away!)

Dampening

- Misused in past (we were wrong about default parameters)
- Heavy contribution of few sites to GH data suggests very generous parameters which only penalize egregious flappers
 - Study needed to validate what constitutes "egregious"
- Given parameters, can be turned on today
 - Lower-than-low hanging fruit
 - Aligns costs and benefits

Punch Line

- BGP not in danger of falling over
 - Lots of runway
- IDR
 - Near-term improvements
 - Most cause increased use of router resources
- RRG
 - Fundamental changes, e.g. new routing and addressing architectures
- GROW (recharter)
 - Analysis of routing system
- BMWG, IPPM
 - Define metrics